在许多计算机断层扫描(CT)成像应用程序中,重要的是快速收集来自移动或随时间变化的对象的数据。通常假设断层图像是逐步拍摄的,其中物体旋转到每个期望的角度,并且拍摄视图。然而,阶梯和射击采集缓慢并且可以浪费光子,因此在实践中,在收集数据的同时连续旋转物体的情况下进行飞行扫描。然而,这可能导致运动模糊的视图,从而与严重运动伪影进行重建。在本文中,我们介绍了Codex,一个模块化框架,用于联合去模糊和断层切断重建,可以有效地颠倒在扫描中引入的运动模糊。该方法是具有新型非凸贝叶斯重建算法的新型采集方法的协同组合。 Codex通过使用重建算法的已知二进制代码编码采集而作证,然后重转反转。使用良好选择的二进制代码进行编码测量可以提高反转过程的准确性。 Codex重建方法使用乘法器(ADMM)的交替方向方法将逆问题分成迭代解训和重建子问题,使重建实用实现。我们对模拟和实验数据的重建结果显示了我们方法的有效性。
translated by 谷歌翻译
The number of international benchmarking competitions is steadily increasing in various fields of machine learning (ML) research and practice. So far, however, little is known about the common practice as well as bottlenecks faced by the community in tackling the research questions posed. To shed light on the status quo of algorithm development in the specific field of biomedical imaging analysis, we designed an international survey that was issued to all participants of challenges conducted in conjunction with the IEEE ISBI 2021 and MICCAI 2021 conferences (80 competitions in total). The survey covered participants' expertise and working environments, their chosen strategies, as well as algorithm characteristics. A median of 72% challenge participants took part in the survey. According to our results, knowledge exchange was the primary incentive (70%) for participation, while the reception of prize money played only a minor role (16%). While a median of 80 working hours was spent on method development, a large portion of participants stated that they did not have enough time for method development (32%). 25% perceived the infrastructure to be a bottleneck. Overall, 94% of all solutions were deep learning-based. Of these, 84% were based on standard architectures. 43% of the respondents reported that the data samples (e.g., images) were too large to be processed at once. This was most commonly addressed by patch-based training (69%), downsampling (37%), and solving 3D analysis tasks as a series of 2D tasks. K-fold cross-validation on the training set was performed by only 37% of the participants and only 50% of the participants performed ensembling based on multiple identical models (61%) or heterogeneous models (39%). 48% of the respondents applied postprocessing steps.
translated by 谷歌翻译
联邦学习使客户的隐私保留,引起了人们的兴趣。作为联合学习的一种变体,联邦转移学习利用了来自相似任务的知识,因此也经过深入研究。但是,由于无线电频谱的有限,通过无线链接的联合学习的沟通效率至关重要,因为某些任务可能需要数千个上行链路有效载荷。为了提高沟通效率,我们在本文中提出了基于功能的联合转移学习作为一种创新方法,将上行链路有效载荷降低了五个以上的数量级,而不是现有方法。我们首先介绍系统设计,其中提取的功能和输出被上传而不是参数更新,然后用此方法确定所需的有效负载,并与现有方法进行比较。随后,我们分析了保留客户隐私的随机改组计划。最后,我们通过对图像分类任务进行实验评估了提出的学习方案的性能,以显示其有效性。
translated by 谷歌翻译
心血管疾病是全球死亡的主要原因,是一种与年龄有关的疾病。了解衰老期间心脏的形态和功能变化是一个关键的科学问题,其答案将有助于我们定义心血管疾病的重要危险因素并监测疾病进展。在这项工作中,我们提出了一种新型的条件生成模型,以描述衰老过程中心脏3D解剖学的变化。提出的模型是灵活的,可以将多个临床因素(例如年龄,性别)整合到生成过程中。我们在心脏解剖学的大规模横截面数据集上训练该模型,并在横截面和纵向数据集上进行评估。该模型在预测衰老心脏的纵向演化和对其数据分布进行建模方面表现出了出色的表现。
translated by 谷歌翻译
人工智能(AI)的应用围绕着越来越多的人类生活的决定。社会通过对这种自动决策系统(ADSS)的责任制施加法律和社会期望来做出回应。公平是AI问责制的基本组成部分,与个人和敏感群体的治疗(例如,基于性别,种族)有关。尽管许多研究着重于分类任务的公平学习和公平测试,但文献却相当有限地限制了如何检查回归任务中的公平性。这项工作将错误平价作为回归公平概念,并引入了基于统计假设测试程序评估群体公平性的测试方法。错误奇偶校验测试检查预测错误是否在敏感组之间相似地分布,以确定广告是否公平。随后进行了合适的置换测试,以比较几个统计数据的组,以探索差距并确定受影响的群体。提出的方法的有用性和适用性是通过关于美国在美国县一级的COVID-19预测的案例研究来证明的,该研究揭示了基于种族的预测错误的差异。总体而言,拟议的回归公平测试方法学填补了公平机器学习文献中的空白,并且可以作为更大的问责制评估和算法审核的一部分。
translated by 谷歌翻译
了解脑损伤的强度特征是定义神经系统研究和预测疾病负担和结局的基于图像的生物标志物的关键。在这项工作中,我们提出了一种基于前景的新型生成方法,用于对局部病变特征进行建模,该方法既可以在健康图像上产生合成病变,又可以从病理图像中综合受试者特异性的伪健康图像。此外,该方法可以用作数据增强模块,以生成用于训练大脑图像分割网络的合成图像。在磁共振成像(MRI)上获得的多发性硬化症(MS)脑图像的实验表明,所提出的方法可以生成高度逼真的伪健康和伪病理学脑图像。与传统的数据增强方法以及最近的病变感知数据增强技术Carvemix相比,使用合成图像进行数据扩展可改善大脑图像分割的性能。该代码将在https://github.com/dogabasaran/lesion-synthesis中发布。
translated by 谷歌翻译
自动决策算法正在越来越多地做出或协助影响人类生活的决策。这些算法中有许多处理个人数据,以预测累犯,信用风险分析,使用面部识别识别个人等等。尽管有可能提高效率和有效性,但这种算法并非固有地摆脱偏见,不透明,缺乏解释性,恶意性等。鉴于这些算法的结果对个人和社会产生了重大影响,并且在部署后开放分析和竞争,因此必须在部署前考虑此类问题。正式审核是确保算法符合适当的问责制标准的一种方式。这项工作基于对文献和专家焦点小组研究的广泛分析,为系统问责制定基于人工智能决策系统的正式审核的系统问责制定了一个统一的框架。这项工作还建议系统卡作为记分卡,展示此类审核的结果。它由56个标准组成,该标准由四乘四分之四的矩阵组织,该矩阵由重点介绍(i)数据,(ii)模型,(iii)代码,(iv)系统的行组成,以及重点介绍(a)的列,(b )评估,(c)缓解和(d)保证。拟议的系统问责制基准反映了负责系统的最新开发,可作为算法审核的清单,并为未来研究的顺序工作铺平了道路。
translated by 谷歌翻译
我们解决了监视一组二进制随机过程的问题,并在其中的异常数超过阈值时生成警报。为此,决策者选择并探测过程的子集以获得其状态的噪声估计(正常或异常)。根据所接收的观察,决策者首先确定是否声明异常数已超过阈值或继续观察。当决定继续时,它会决定是否在下次即时收集观察,或者将其推迟到以后的时间。如果它选择收集观察,它进一步确定了待探测的过程的子集。为了设计这三步的顺序决策过程,我们使用贝叶斯制剂,其中我们学习了过程的状态的后验概率。使用后验概率,我们构建了马尔可夫决策过程,并利用深刻的演员批评加强学习解决了它。通过数值实验,我们展示了与传统的基于模型的算法相比的算法的卓越性能。
translated by 谷歌翻译
我们解决了从给定集中选择和观察过程的问题,以找到其中的异常。决策者在任何给定的时间瞬间观察过程的子集,并获得相应过程是否异常的嘈杂二进制指示符。在该设置中,我们开发了一种异常检测算法,该检测算法选择在给定的时间瞬间观察的过程,决定何时停止观察,并宣布对异常过程的决定。检测算法的目的是识别具有超过所需值的精度的异常,同时最小化决策制定的延迟。我们设计了一种集中式算法,其中通过公共代理和分散算法共同选择进程,其中对于每个过程独立决定是否选择过程。我们的算法依赖于使用每个过程的边际概率定义的马尔可夫决策过程正常或异常,调节观察结果。我们利用深度演员批评加强学习框架实现了检测算法。与在此主题的事先工作不同,在流程数量中具有指数复杂性,我们的算法具有在过程数量中的多项式的计算和内存要求。我们通过将它们与最先进的方法进行比较来证明这些算法使用数值实验的功效。
translated by 谷歌翻译